

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI SCIENZE AGRARIE E AMBIENTALI PRODUZIONE, TERRITORIO, AGROENERGIA

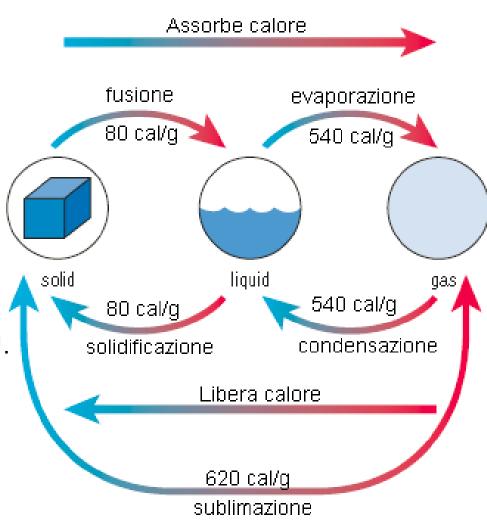
LA PIOGGIA

Marco Acutis

Corso di studi in Produzione e Protezione delle Piante e dei Sistemi del Verde

L'acqua

- Fondamentale per i vegetali
 - costituente fino al 95% nei vegetali (98% nelle cactacee, 7% semi)
 - CO₂+**H₂O**=carboidrati nella fotosintesi
 - Traslocazione fotosintetati
 - in tutti i processi idrolitici e enzimatici
 - assorbimento delle sostanze nutritive e loro trasporto
 - turgore dei tessuti (consistenza meccanica agli organi che non hanno tessuti di sostegno)
 - riduzione del riscaldamento della parte epigea
- Forme in cui compare
 - Vapore (umidità assoluta e relativa dell'aria)
 - Liquido (nel suolo, nelle piogge, rugiada, corpi idrici)
 - Solido (ghiaccio, brina, precipitazione di grandine e neve)

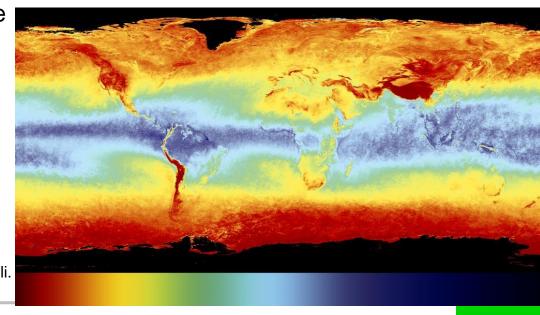

Passaggi di stato

• Da solido a liquido (**fusione**): occorrono 80 cal g⁻¹ : finché tutto il ghiaccio non si è sciolto, la temperatura del solido non va oltre 0° C.

• Da liquido a vapore (**evaporazione**): occorrono 540 cal g⁻¹, e comporta quindi raffreddamento

da solido a vapore e viceversa
(sublimazione): occorrono 620 cal g⁻¹.

• solidificazione e condensazione necessitano di una quantità di energia pari rispettivamente a 80 e 540 cal g⁻¹


L'umidità dell'aria

L'aria è una miscela di gas, con acqua allo stato di vapore

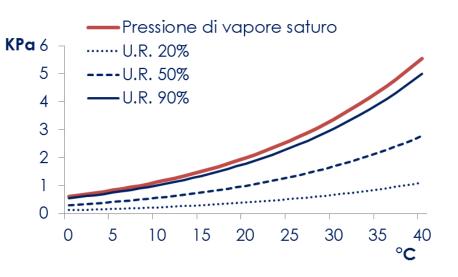
Il contenuto di umidità nell'aria è presente in misura molto variabile (la media è intorno all'1% sul volume totale, ma sulle regioni tropicali e in seno alle masse di aria calda può arrivare al 4%), esso influenza:

- bilancio energetico (assorbe radiazione)
- fenomeni meteorologici (formazione nubi e precipitazione)
- assorbimento delle sostanze nutritive e loro trasporto
- turgore dei tessuti
- riduzione del riscaldamento della parte epigea
- attività di crittogame

Vapore acqueo atmosferico: rosso indica bassi livelli,blu scuro alti livelli. European Space Agency (2006)

L'umidità dell'aria

Lo stato igrometrico dell'aria si esprime come:


- umidità assoluta (UA): esprime quanti grammi di vapore acqueo sono presenti in 1 m³ di aria umida. Ad esso corrisponde una determinata pressione di vapore (e_a); è poco utile, in quanto a seconda della temperatura, la stessa quantità di H₂O ha effetti diversi: se aumenta la temperatura, aumenta anche l'umidità assoluta.
- umidità relativa (UR): indica il rapporto % tra la quantità di vapore contenuto da una massa d'aria e la quantità massima (a saturazione) che il volume d'aria può contenere nelle stesse condizioni di temperatura e pressione. Più correlata ai fenomeni biologici.
- **Deficit di saturazione (VPD)**: differenza della pressione di vapore tra quella attuale e quella a saturazione (*driving force* per processi di evaporazione)

VPD = vapour pressure deficit = $e_s - (e_s * UR/100)$ [kPa]

e_s è la pressione di vapore acqueo a saturazione

$$es = 0.6108 \exp \frac{17.27T_{\text{max}}}{T_{\text{max}} + 237.3}$$

L'umidità dell'aria

Pressione di vapore attuale a diversi livelli di umidità relativa dell'aria

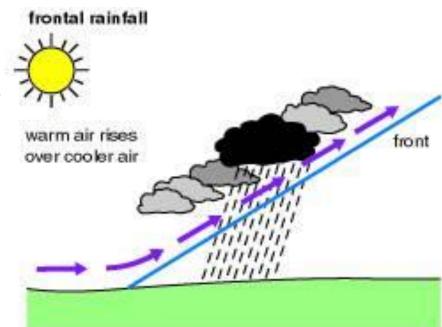
Deficit di pressione di vapore a diversi livelli di umidità relativa dell'aria

La Pioggia

- La pioggia è precipitazione dell'acqua in forma liquida
- Il vapore acqueo viene portato verso l'alto da correnti ascendenti; salendo, l'aria si raffredda e raggiunge la saturazione (UR=100%).
- La condensazione avviene grazie ai "nuclei di condensazione" (o "igroscopici"), costituiti da particelle di pulviscolo e cristalli di ghiaccio (di dimensioni comprese tra 0,1 e 4 µm)
- Gocce 0,5 5 mm
- Velocità di caduta 2 9 m s⁻¹

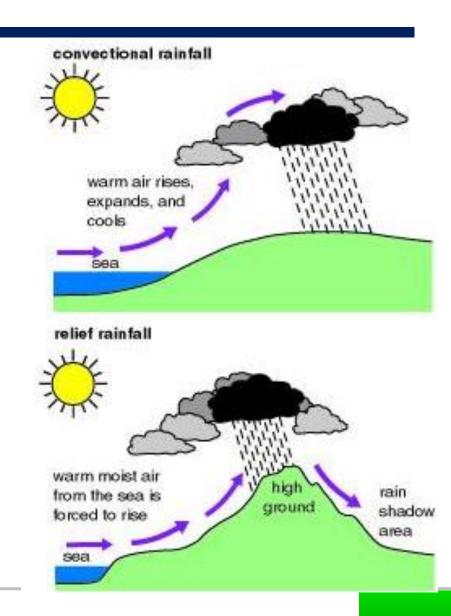
Tipi di piogge:

• Frontali: incontro di masse d'aria a diversa temperatura e umidità - aree temperate e sub-tropicali


nord

aria fredda

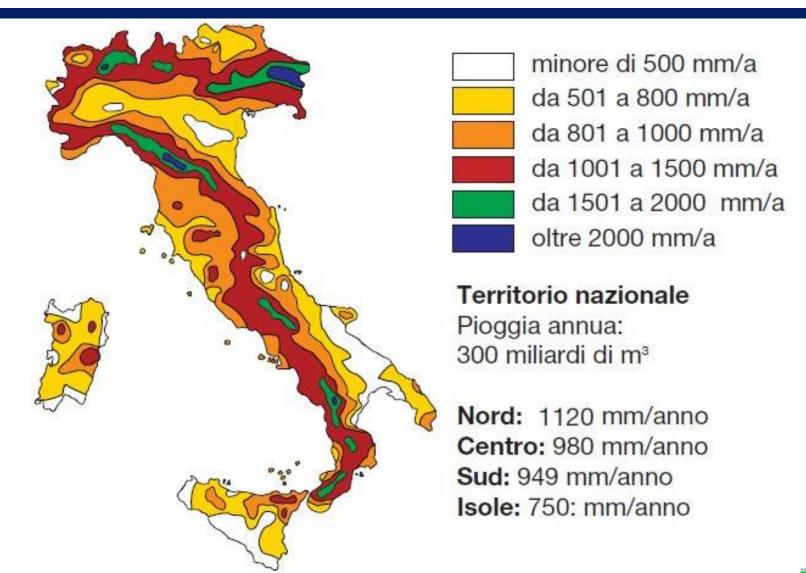
aria calda


sud

La Pioggia

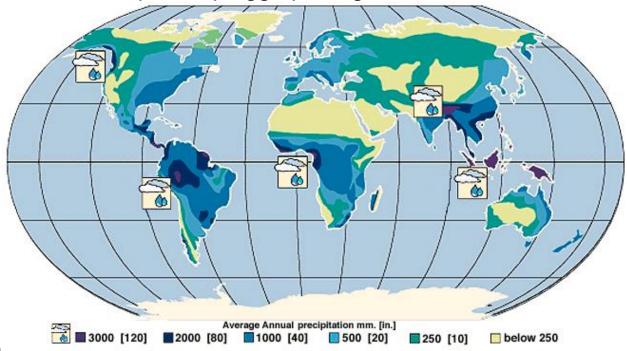
 Convettive: sollevamento di aria umida riscaldata dall'atmosfera raffreddamento condensazione Tipicamente intertropicali, acquazzone pomeridiano

 Orografiche: masse d'aria umide incontrano i fianchi freddi delle montagne: alisei in isole tropicali che trasportano aria umida versante sud Himalaya; Alpi Apuane


- Media della Terra: 1000 mm anno⁻¹
- Minimi 2-3 mm anno-1 deserto del Cile
- Massimo 12000 mm anno⁻¹ versante sud Himalaya

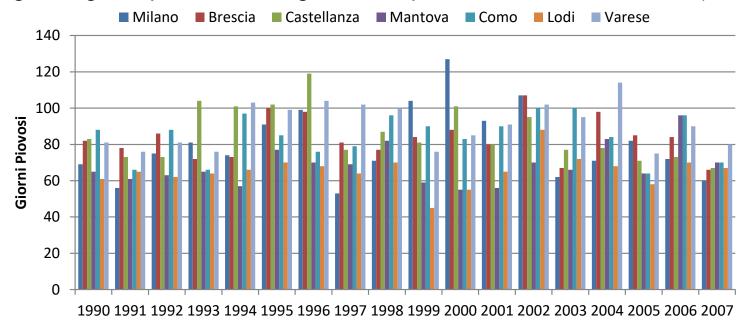
In Italia:

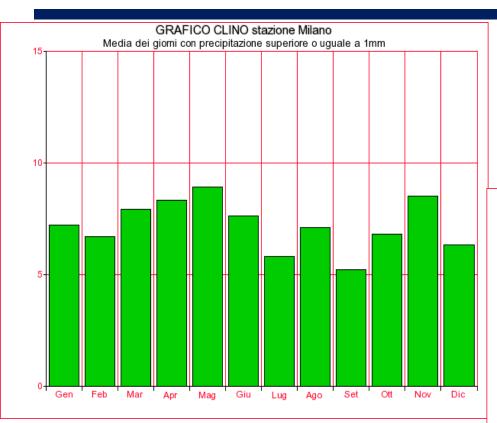
- Media precipitazione Italia 970 mm anno⁻¹;
- Minimi < 500 mm anno⁻¹ tavoliere delle Puglie, Sicilia sud ovest, Ovada
- Massimi: Alpi Carniche 2500-3000 mm anno⁻¹


Classificazioni climi in base alle piogge:

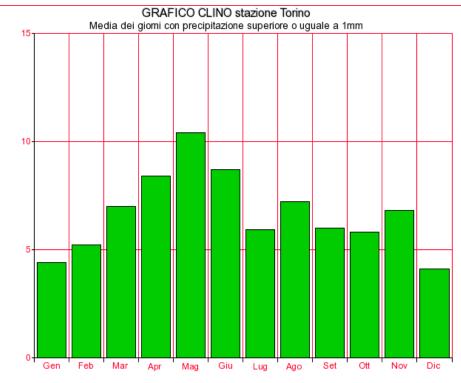
- < 250 mm anno⁻¹ → arido: non si può fare agricoltura senza irrigazione
- 250-500 mm anno⁻¹ → semiarido
- 500-750 mm anno⁻¹ \rightarrow subumido
- > 750 mm anno⁻¹ → umido: l'irrigazione non comporta incrementi produttivi (attenzione spesso non è vero!)

Distribuzione stagionale delle piogge:

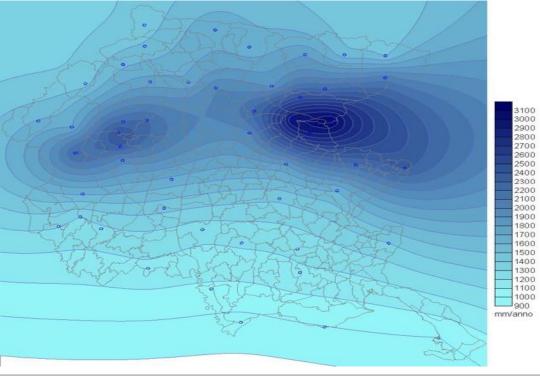

- Equatore (± ° 6) 2 stagioni delle piogge dopo gli equinozi, brevi
- tra 6 e 20°: 1 stagione delle piogge con l'altezza massima del Sole
- tra 20 e 35° alte pressioni: piogge scarse e irregolari deserti subtropicali
- >35° fascia temperata piogge più regolari a nord



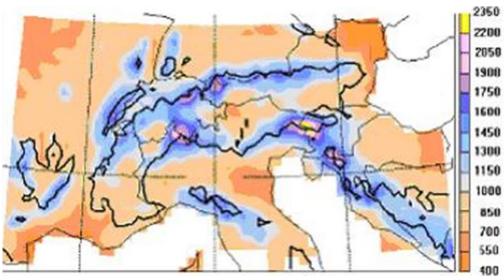
Frequenza


- Numero di giorni piovosi all'anno (si considera piovoso un giorno con precipitazioni > 1 mm)
- Piogge frequenti soprattutto nei periodi caldi sono le più favorevoli all'agricoltura

(Parigi 200 giorni piovosi, Marsiglia 60, Napoli 90-100, Milano 60-120)



N giorni piovosi (anni 1931-1990)



Piovosità media 1971-1990

Intensità di Pioggia

Si esprime in mm ora-1

Rugiada <0,5 mm h⁻¹ gocce che si formano su superfici fredde

Pioviggine <0,5 mm h⁻¹ gocce con diametro < di 0.5 mm

Pioggia leggera 1 mm h⁻¹ gocce con diametro > di 0.5 mm

Pioggia moderata 4 mm h⁻¹

Pioggia forte 15 mm h⁻¹

Pioggia violenta 40 mm h⁻¹

Nubifragio 100 mm h⁻¹

- le più efficaci per l'agricoltura sono quelle leggere e moderate, non danno luogo a ruscellamento
- Piogge forti, oltre al ruscellamento hanno azione battente sul terreno, con formazione di croste

Pioggia utile

 Frazione della pioggia totale di un evento che può essere utilizzata dalle piante

Tab. 2.12 — Stima della pioggia utile (mm), in assenza di scorrimento superficiale, con il metodo USDA (SCS)

ET (mm) mensile	Pioggia mensile (mm)															
	12.5	25	37.5	50	62.5	75	87.5	100	112.5	125	137.5	150	152.5	175	187.5	200
							Pioggi	a utile	mensile	(mm)						
25	8	16	24													
50	8	17	25	32	39	46										
75	9	18	27	34	41	48	56	62	69							
100	9	19	28	35	43	52	59	66	73	80	87	94	100			
125	10	20	30	37	46	54	62	70	76	85	92	98	107	116	120	
150	10	21	31	39	49	57	65	74	81	89	97	104	112	119	127	133
175	11	23	32	42	52	61	69	78	86	95	103	111	118	126	134	141
200	11	24	33	44	54	64	73	82	91	100	109	117	125	134	142	150
225	12	25	35	47	57	68	78	87	96	106	115	124	132	141	150	159
250	13	25	38	50	61	72	84	92	102	112	121	132	140	150	158	167
RU	20	25		37,5	50		62.5	7	15	100	12	2.5	150	1	 75	200
$F_{\scriptscriptstyle c}$	0,73	0,	77	0,86	0,9	93	0,97	1.	00	1.03	1.0)4	1.06	1.	07	1.08

Probabilità di Pioggia

- Per la programmazione delle colture, bilanci idrici e il dimensionamento di impianti irrigui è utile conoscere la probabilità di superamento di determinati valori di pioggia, in genere mensili e nei mesi più caldi, dato che la variabilità tra gli anni spesso è elevata.
- Per caratterizzare una zona da un punto di vista delle probabilità di pioggia

Frequenza (F)

del verificarsi di un fenomeno (es. evento piovoso > 100 mm/giorno) Numero di volte che un evento si verifica in n anni

Es. 1: 5 volte in 30 anni \Rightarrow F= 0.16 (5/30)

Es. 2: 60 volte in 30 anni \Rightarrow F= 2 (60/30)

Tempo di ritorno (1/F)

è il tempo medio di attesa tra il verificarsi di due eventi successivi

Es. 1: 5 volte in 30 anni \Rightarrow TR= 1/0.16 = 6.25

Es. 2: 60 volte in 30 anni \Rightarrow TR= $\frac{1}{2}$ = 0.50

COLTURE	STAGIONE	IDRICI	FABBISOGNI DI PUNTA	MESE DI MAGGIORE RICHIESTA D'ACQUA Luglio		
	IRRIGUA	TOTALI (m ³ / ha)	m ³ /ha)			
medica	Aprile- Settembre	6800-8400	1500			
mais da granella	Giugno- Settembre	3600	1400	15 Luglio-15 Agosto		
barbabietola da zucchero	Aprile-Agosto	4200	1300	Luglio		
patata	Maggio- Agosto	3200	1200	Luglio		
erbaio estivo	Luglio- Settembre	4000	1500	15 Luglio-15 Agosto		
frutteto- agrumeto	Maggio- Ottobre	4200	1200	15 Luglio-15 Agosto		
ortaggi	Aprile- Ottobre	5000-6000	1500	Giugno- Agosto		
vigneto	Luglio- Agosto	1200	1000	15 Luglio-15 Agosto		

Domande

- Acqua: quali sono le ragioni per cui è elemento fondamentale per i vegetali
- 2) Umidità assoluta e umidità relativa
- 3) Valori orientativi dei mm e dei giorni di pioggia nella Pianura Padana
- Come si classificano le piogge in base alla intensità e quali sono le più efficaci in agricoltura
- 5) Cosa si intende per pioggia utile e come si calcola
- 6) Fabbisogno idrico delle piante: alcuni valori colturali
- 7) Come si classificano le piogge in base alla intensità e quali sono le più efficaci in agricoltura?